powered by Google (TM)
index: click on a letter
A B C D E
F G H  I  J
K L M N O
P Q R S T
U V W X Y
Z A to Z index
index: subject areas
numbers & symbols
sets, logic, proofs
geometry
algebra
trigonometry
advanced algebra
& pre-calculus
calculus
advanced topics
probability &
statistics
real world
applications
multimedia
entries
about mathwords  
website feedback  


Logistic Growth

A model for a quantity that increases quickly at first and then more slowly as the quantity approaches an upper limit. This model is used for such phenomena as the increasing use of a new technology, spread of a disease, or saturation of a market (sales).

The equation for the logistic model is . Here, t is time, N stands for the amount at time t, N0 is the initial amount (at time 0), K is the maximum amount that can be sustained, and r is the rate of growth when N is very small compared to K.

Note: The logistic growth model can be obtained by solving the differential equation

 

See also

Exponential growth, exponential decay

 


  this page updated 15-jul-23
Mathwords: Terms and Formulas from Algebra I to Calculus
written, illustrated, and webmastered by Bruce Simmons
Copyright © 2000 by Bruce Simmons
All rights reserved
NCTM Web Bytes December 2004 Web Bytes March 2005 Web Bytes